
Acta Technica 62 (2017), No. 5B, 821�828 c© 2017 Institute of Thermomechanics CAS, v.v.i.

A parallel Biconjugate
A-Orthonormalization algorithm for

linear system

CHENG Shaohua2, ZHANG Litao2, ZHAO

Jianfeng3

Abstract. In this paper, based on the Biconjugate A-Orthonormalization (BiCOR) algorithm

in Jing et al. (Journal of Computational Physics, 228:6376�6394,2009) and the ideas in Gu et

al. (Applied Mathematics and Computation 186:1243�1253, 2007), the authors present a parallel

Biconjugate A-Orthonormalization (PBiCOR) algorithm for linear systems. The new algorithms

reduce two global synchronization points to one by changing the computation sequence in the

Biconjugate A-Orthonormalization (BiCOR) algorithm, and all inner products per iteration are

independent and communication time required for inner product can be overlapped with useful

computation. Theoretical analysis shows that the PBiCOR method has better parallelism and

scalability than the BiCOR method.

1. Introduction

One of the fundamental tasks of numerical computation is to solve linear systems.
These systems arise frequently in scienti�c computing, for example, from �nite dif-
ference or �nite element discretization of partial di�erential equations (PDEs), as
intermediate steps in �nding the solution of non-linear problems or as sub-problems
in linear and non-linear programming. Usually, these systems are large, sparse and

1Acknowledgement - This research of this author is supported by NSFC (11226337,
11501525), Excellent Youth Foundation of Science Technology Innovation of Henan
Province (184100510004),Science Technology Innovation Talents in Universities of Henan
Province(16HASTIT040, 17HASTIT012) , Aeronautical Science Foundation of China
(2016ZG55019), Project of Youth Backbone Teachers of Colleges and Universities of Henan
Province (2015GGJS-003, 2015GGJS-179), Henan Province Postdoctoral Science Foundation
(2013031), Research on Innovation Ability Evaluation Index System and Evaluation Model
(142400411268).

2Workshop 1 - College of Science, Zhengzhou University of Aeronautics, Zhengzhou, Henan,
450015, P. R. China

3Workshop 2 - Information Engineering Department, Henan Polytechnic, Zhengzhou, Henan,
450046, P. R. China; e-mail: 670946614@qq.com

http://journal.it.cas.cz

670946614@qq.com


822 CHENG SHAOHUA, ZHANG LITAO, ZHAO JIANFENG

non-symmetric and solved by iterative methods [3].
Among the iterative methods for large sparse systems, Krylov subspace methods

are the most powerful. For example, conjugate gradient (CG) method for solv-
ing symmetric positive de�nite linear systems, the GMRES method, BiCG method
[3], quasi-minimal residual(QMR)method [2], BiCGStab method [5] and biconju-
gate residual (BiCR) method [4] for solving non-symmetric linear systems and so
on. However, the Krylov subspace methods enforce bottleneck, i.e., the global com-
munication induced by inner product computations, when used in large-scale parallel
computing.

In this paper, based on Biconjugate A Orthonor-malization (BiCOR) algorithm
for large sparse linear systems in Jing et al. (2009), the authors present a parallel
Biconjugate A-Orthonormalization (PBiCOR) algorithm, which is designed for dis-
tributed parallel environments. The parallel BiCOR method is reorganized without
changing the numerical stability and all inner products per iteration are indepen-
dent (only one single global synchronization point), and subsequently communica-
tion time required for inner products can be overlapped e�ciently with computation
time. The cost is only a little increased computation. Theoretical analysis shows
that the PBiCOR method has better parallelism and scalability than the BiCOR
method, and the parallel performance can be improved by a factor of about 3/2.

2. Material and methods

In 2009, Jing et al. (2009) proposed the Biconjugate A Orthonor-malization
(BiCOR) algorithm, which is written as follows:

Algorithm 2 : Parallel BiCOR Procedure (PBiCOR)
1. Set β1 = δ1 = 0, w0 = v0 = w1 = v1 = 0 ∈ Cn
2. For j = 1, 2, ...,m Do :
3. αj = 〈wj , A(Avj)〉 , cj = 〈wj , A(Avj)〉 , fj = 〈wj , A(Avj−1)〉 ,

dj = 〈wj , Avj〉 , gj = 〈wj , Avj−1〉 , hj = 〈wj−1, A(Avj)〉 ,
kj = 〈wj−1, Avj〉 , lj = 〈wj−1, Avj−1〉

4. πj+1 = 〈ŵj+1, Av̂j+1〉 = cj − 2− βjfj − α2
jdj

+ αjβjgj − δjhj + δjαjkj + δjβj lj
5. v̂j+1 = Avj − αjvj − βjvj−1

6. ŵj+1 = AHwj − αjwj − δjwj−1

7. δj+1= |πj+1|1/2
8. βj+1= 1

δj+1
πj+1

9. vj+1 =
v̂j+1

δj+1

10. wj+1 =
ŵj+1

βj+1

12. EndDo

In Algorithm 1, steps 4) and 8) require inner products and have close data de-
pendency. So there are two global synchronization points per iteration. These global
communication costs become relatively more and more important when the number
of parallel processors is increased and thus they have the potential to a�ect the scal-



A PARALLEL BICONJUGATE A-ORTHONORMALIZATION ALGORITHM 823

ability of the algorithm in a negative way. Gu et al. (2007) proposed an improved
biconjugate residual algorithm where the synchronization overhead is e�ectively re-
duced by a factor of two. Based on their similar ideas, the author propose a parallel
BiCOR algorithm which is to overlap the main computational kernels such as vec-
tor updates, matrix-vector multiplications and inner products so that they can be
executed in parallel per iteration of the algorithm.

De�ne

cj = 〈wj , A(Avj)〉 , fj = 〈wj , A(Avj−1)〉 , dj = 〈wj , Avj〉 ,
gj = 〈wj , Avj−1〉 , hj = 〈wj−1, A(Avj)〉 , kj = 〈wj−1, Avj〉 ,
lj = 〈wj−1, Avj−1〉

Then we have

πj+1 = 〈ŵj+1, Av̂j+1〉 = cj − 2− βjfj − α2
jdj

+αjβjgj − δjhj + δjαjkj + δjβj lj

The parallel BiCOR method can be presented in the following:

Algorithm 2 : Parallel BiCOR Procedure (PBiCOR)
1. Set β1 = δ1 = 0, w0 = v0 = w1 = v1 = 0 ∈ Cn
2. For j = 1, 2, ...,m Do :
3. αj = 〈wj , A(Avj)〉 , cj = 〈wj , A(Avj)〉 , fj = 〈wj , A(Avj−1)〉 ,

dj = 〈wj , Avj〉 , gj = 〈wj , Avj−1〉 , hj = 〈wj−1, A(Avj)〉 ,
kj = 〈wj−1, Avj〉 , lj = 〈wj−1, Avj−1〉

4. πj+1 = 〈ŵj+1, Av̂j+1〉 = cj − 2− βjfj − α2
jdj

+ αjβjgj − δjhj + δjαjkj + δjβj lj
5. v̂j+1 = Avj − αjvj − βjvj−1

6. ŵj+1 = AHwj − αjwj − δjwj−1

7. δj+1= |πj+1|1/2
8. βj+1= 1

δj+1
πj+1

9. vj+1 =
v̂j+1

δj+1

10. wj+1 =
ŵj+1

βj+1

12. EndDo

Remark 2.1 The inner products of a single iteration step 3) is independent(parallel).

3. Theoretical Results

The recurrence process of the PBiCOR method shows that the PBiCOR and
the BiCOR methods are mathematically equivalent. The computational count
and number of global synchronization points per iteration for both methods without
preconditioning are shown in Table 1.

Table 1. The amount of calculation per iteration



824 CHENG SHAOHUA, ZHANG LITAO, ZHAO JIANFENG

Method Vector

update

Inner

product

Matrix

vector

Global

synchro.

BiCOR 2 2 4 2

PBiCOR 2 8 3 1

From Table 1, the readers can see that, compared with the BiCOR method,
the global synchronization points per iteration of the PBiCOR method have been
reduced from 2 to 1. Similar idea with Gu et al. (2007), we give a performance
analysis of both methods on distributed memory parallel computers, in which each
processor involves memory model and corresponding operation units connected by
network. All operation units execute the same program, i.e., Single-Program and
Multi-Data (SPMD) model. If one of processors needs data from other processors,
message passing must be performed. The following denotations will be used as
follows: P is the number of processors; N is the total number of unknowns; nz is the
average number of nonzero elements per row in the matrix A; tfl is the average time
for a double precision �oating point operation; ts denotes the communication start-
up time; tw is the transmission time of a word between two neighboring processors.

Since the computational and communication patterns are the same per iteration,
we only consider the time complexity of parallel computation and communication of
one iteration. For a vector update (daxpy) or an inner product (ddot), the compu-
tation time is given by 2tflN/P , where N/P is the local number of unknowns on a
processor. The computation time of matrix-vector multiplication is (2nz−1)tflN/P .

Consider a mesh-based processor grid with P processors, and assume that the
communication is carried out through binary tree structure. Then, the global ac-
cumulation and broadcast time for one inner product is 2 logP (ts + tw), while
the global accumulation and broadcast time for k simultaneous inner products is
2 logP (ts + ktw). The authors have assumed that coe�cient matrix are mapped to
processors such that for the matrix-vector a processor needs only to communicate
with the nearest neighbor processors. The communication for the matrix-vector
product is necessary for the exchange of so-called boundary data: sending boundary
data to other processor and receiving boundary data from other processors. Assume
that each processor has to send and receive nm messages and the number of bound-
ary data elements on a processor is given by nb. Therefore, the total number of
words that have to be communicated (sent and received) is then 2(2nb + nm) per
processor. For both methods, the communication time of one matrix-vector product
is 2nmts + 2(2nb + nm)tw.

n summary, the time of a vector update is, since it needs no communication, that

tvec_upd = 2tflN/P.

the time for k simultaneous inner products that need only one global communication
is

tinn_prod(k) = 2ktflN/P + 2 logP (ts + ktw),



A PARALLEL BICONJUGATE A-ORTHONORMALIZATION ALGORITHM 825

and the time for a matrix-vector product is

tmat_vec = (2nz − 1)tflN/P + 2nmts + 2(2nb + nm)tw.

So the time per iteration of the BiCOR method is

TBiCOR = 2tvec_upd + 2tinn_prod(1) + 4tmat_vec
= (8nz + 4)tflN/P + 4 logP (ts + tw) + 8nmts + 8(2nb + nm)tw

.

and of the PBiCOR method is

TPBiCOR = 2tvec_upd + tinn_prod(8) + 3tmat_vec
= (6nz + 17)tflN/P + 2 logP (ts + 8tw) + 6nmts + 6(2nb + nm)tw

.

The readers know that ts � tw holds for massively distributed parallel computers.
Comparing TBiCOR and TPBiCOR, the authors get that the parallelism of the PGGl-
CGS2 method is better than that of the BiCOR method since TBiCOR > TPBiCOR.

Minimizing TBiCOR and TPBiCOR from the above two equations, the author
obtain that the number of processors for minimal parallel time of both methods is

PBiCOR =
(8nz + 4)tflN ln 2

4(ts + tw)
=

(2nz + 1
2 )tflN ln 2

ts + tw

and

PPBiCOR =
(6nz + 17)tflN ln 2

2(ts + 2tw)
) =

(3nz + 17
2 )tflN ln 2

ts + tw
,

respectively. Since ts � tw, therefore inequality

PPBiCOR
PBiCOR

≈
3nz + 17

2

2nz + 1
2

>
3

2

is satis�ed for any nz > 0. It shows that the PBiCOR method has better scalability
than the BiCOR method.

The improved ratio for the P BiCOR method against the BiCOR method is

η =
TBiCOR − TPBiCOR

TBiCOR
≈ 2tsP logP − (2nz − 13)tflN

4tsP logP + (8nz + 4)tflN
→ 50%

for ts � tw, when N is �xed and P is large enough.

4. Issoe�ciency analysis about two methods

Since it is not known in advance how many iteration steps a method needs to
converge, we do not consider the whole algorithm until its termination but consider
a single iteration step and take N , the dimension of the coe�cient matrix, as the
problem size. The readers know that the sequential execution time is usually ex-
pressed as a function of problem size. So the execution time of the fastest known



826 CHENG SHAOHUA, ZHANG LITAO, ZHAO JIANFENG

sequential algorithm to perform a single BiCOR-like iteration is

Tseq(N) = cNtfl = Θ(N) (1)

where c is a constant.
For the motivation of the isoe�ciency concept, we brie�y state the conventional

de�nitions of speedup and e�ciency as given in [1]. The speedup S is de�ned as the
ratio of the time to solve a problem on a single processor using the fastest known
sequential algorithm to the time required to solve the same problem on a parallel
computer, S = Tseq/Tpar. The e�ciency E is de�ned as the ratio of the speedup to
the number of processors, E = S/P .

One can expect to keep e�ciency constant by allowing Tseq to grow properly
with increasing number of processors. The rate at which Tseq has to be increased
with respect to the number of processors P to maintain a �xed e�ciency can serve
as a measure of scalability.

Algorithm implementations on real parallel computers do not achieve optimal
speedup. For example, data communication delays and synchronization are reasons
for nonoptimal speedup. All causes of dropping the theoretically ideal speedup are
call overhead and the total overhead function is formally de�ned as

Tover = (O,P ) = PTpar(N,P )− Tseq(N). (2)

i.e. the part of the total time spent in solving a problem summed over all processors
PTpar that is not incurred by the fastest known sequential algorithm Tseq. So, the
e�ciency can be expressed as a function of the total overhead and the execution
time of the fastest known sequential algorithm

E =
S

P
=

Tseq(N)

PTpar(N,P )
=

Tseq(N)

Tseq + Tover(N,P )
=

1

1 + Tover(N,P )/Tseq(N)
.

The rate with respect to P at which Tseq has to be increased to keep e�ciency
constant is used to asses the quality of a scalable parallel system. For example, if
Tseq has to be increased as an exponential function of P to maintain e�ciency �xed,
the system is poorly scalable. A system is highly scalable if one only has to linearly
increase Tseq with respect to P . Such growth rates can be calculated from (??)1) or
from

Tseq(N) =
E

1− E
Tover(N,P ). (3)

The authors now carried out the isoe�ciency analysis for a single BiCOR-like
iteration step. To calculate growth rates from (??)3), we need to know Tseq and
Tover of a single BiCOR-like iteration step. The total execution time of the fastest
known sequential algorithm is given by (??)3). The total overhead is solely due to
communication times, i.e. Tover = Pcomm.

From Table 1 we can get the sequential time, parallel communication time and



A PARALLEL BICONJUGATE A-ORTHONORMALIZATION ALGORITHM 827

total overhead for BiCOR method per iteration as follows, respectively

T seqBiCOR = 2tcompvec−upd + 2tcompinn−prod(1) + 4tcompmat−vec = (8nz + 4)tflN,

T commBiCOR = 2tcomminn−prod(1) + 4tcompmat−vec = 2 logP (ts + tw) + 8nmts + 8(2nb + nm)tw.

T overBiCOR = PT parBiCOR − T
seq
BiCOR = PT commBiCOR.

Substitute the above equation into (??), we can get following equation

T seqBiCOR = E
1−ET

over
BiCOR,

NBiCOR = (ts+tw)E
tfl(2nz+1)(1−E)P logP ≈ tsE

tfl(2nz+1)(1−E)P logP.

The authors can also get the sequential time, parallel communication time and
total overhead for PBiCOR method per iteration as follows

T seqPBiCOR = 2tcompvec−upd + tcompinn−prod(8) + 3tcompmat−vec = (6nz + 17)tflN,

T commPBiCOR = tcomminn−prod(8) + 3tcompmat−vec = 2 logP (ts + tw) + 8nmts + 8(2nb + nm)tw.

T overPBiCOR = PT parPBiCOR − T
seq
BiCOR = PT commBiCOR.

Substitute the above equation into (??), we obtain

T seqPBiCOR = E
1−ET

over
BiCOR,

NPBiCOR = (ts+tw)E

tfl(3nz+
17
2 )(1−E)

P logP ≈ tsE
tfl(3nz+

17
2 )(1−E)

P logP.

From the forms of NBiCOR and NPBiCOR, we can see that PBiCOR method has bet-
ter scalability than PBiCOR method and the parallel performance can be improved
by a factor of about 2. For di�erent values of the e�ciency, the results are shown
in Fig. (??)1) and Fig. (??)2), where the �lled curves represent the theoretically
derived isoe�ciency function N ∼ O(P logP ), in which ts = 100µs, tw = 20ns, tfl =
10ns and nz = 5 for our distributed memory parallel computer we do our numerical
experiments on.

Fig. 1. Comparison of isoe�ciency curve of BiCOR and PBiCOR

5. Conclusion

For further performance improvement, one can consider overlap useful computa-
tion with communication.

References



828 CHENG SHAOHUA, ZHANG LITAO, ZHAO JIANFENG

Fig. 2. Isoe�ciency curve of BiCOR(left) and PBiCOR(right)

[1] A.Grama, A.Gupta, V.Kumar: Isoe�ciency function: a scalability metric for
parallel algorithms and architectures. IEEE parallel distributed technology 1 (1993),
No. 3, 12-21.

[2] L.H.Chi, J. Liu, X. P. Liu, Q. F.Hu, X.M. Li: An improved conjugate residual
algorithm for large symmetric linear systems. In Computational Physics, Proceedings
of the Joint Conference of ICCP6 and CCP2003, Rinton Press, New Jersey, USA
(2005), 325-328.

[3] X.P. Liu, T.X.Gu, X.D.Hang, Z.Q. Sheng: A parallel version of QMRCGSTAB
method for large linear systems in distributed parallel environments. Applied Mathe-
matics and Computation 172 (2006), No. 2, 744-752.

[4] Y. Saad: Iterative methods for sparse linear systems. PWS Publishing Company,
Boston (2004).

[5] E. de Sturler: A performance model for Krylov subspace methods on mesh-based
parallel computers. Parallel Computing 22 (1996), 57-74.

[6] L.T. Zhang, X.Y. Zuo, T.X.Gu, T. Z.Huang: Conjugate residual squared
method and its improvement for non-symmetric linear systems. International Jour-
nal of Computer Mathematics 87 (2010),No. 7,1578-1590.

[7] L.T. Zhang, T. Z.Huang, T.X.Gu, X.Y. Zuo: An improved conjugate residual
squared algorithm suitable for distributed parallel computing. Microelectronics and
Computer 25 (2008), No. 10, 12-14.

[8] J.H. Zhang, H.Dai, J. Zhao: Generalized global conjugate gradient squared algo-
rithm. Applied Mathematics and Computation216 (2010), 326-329.

Received November 16, 2017


	CHENG Shaohua, ZHANG Litao, ZHAO Jianfeng: A parallel Biconjugate A-Orthonormalization algorithm for linear system
	Introduction
	Material and methods
	Theoretical Results
	Issoefficiency analysis about two methods
	Conclusion


